A co-training algorithm for multi-view data with applications in data fusion

نویسندگان

  • Mark Culp
  • George Michailidis
چکیده

In several scientific applications, data are generated from two or more diverse sources (views) with the goal of predicting an outcome of interest. Often it is the case that the outcome is not associated with any single view. However, the synergy of all measurements from each view may yield a more predictive classifier. For example, consider a drug discovery application in which individual molecules are described partially by several assay screens based on diverse profiles and partially by their chemical structural fingerprints. A common classification problem is to determine whether the molecule is associated with a particular disease. In this article, a co-training algorithm is developed to utilize data from diverse sources to predict the common class variable. Novel enhancements for variable importance, robustness to a mislabeled class variable, and a technique to handle unbalanced classes are applied to the motivating data set, highlighting that the approach attains strong performance and provides useful diagnostics for data analytic purposes. In addition, comparisons to a framework with data fusion using PLS are also assessed on real data. An R package for performing the proposed approach is provided as supplementary material.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Guided Co-training for Large-Scale Multi-View Spectral Clustering

In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clus...

متن کامل

Extension of the Rocchio Classification Method to Multi-modal Categorization of Documents in Social Media

Most of the approaches in multi-view categorization use early fusion, late fusion or co-training strategies. We propose here a novel classification method that is able to efficiently capture the interactions across the different modes. This method is a multi-modal extension of the Rocchio classification algorithm – very popular in the Information Retrieval community. The extension consists of s...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

Learning with Weak Views Based on Dependence Maximization Dimensionality Reduction

Large number of applications involving multiple views of data are coming into use, e.g., reporting news on the Internet by both text and video, identifying a person by both fingerprints and face images, etc. Meanwhile, labeling these data needs expensive efforts and thus most data are left unlabeled in many applications. Co-training can exploit the information of unlabeled data in multi-view sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009